Modern Electrophysiological Methods for Brain-Computer Interfaces

نویسندگان

  • Rolando Grave de Peralta Menendez
  • Quentin Noirhomme
  • Febo Cincotti
  • Donatella Mattia
  • Fabio Aloise
  • Sara González Andino
چکیده

Modern electrophysiological studies in animals show that the spectrum of neural oscillations encoding relevant information is broader than previously thought and that many diverse areas are engaged for very simple tasks. However, EEG-based brain-computer interfaces (BCI) still employ as control modality relatively slow brain rhythms or features derived from preselected frequencies and scalp locations. Here, we describe the strategy and the algorithms we have developed for the analysis of electrophysiological data and demonstrate their capacity to lead to faster accurate decisions based on linear classifiers. To illustrate this strategy, we analyzed two typical BCI tasks. (1) Mu-rhythm control of a cursor movement by a paraplegic patient. For this data, we show that although the patient received extensive training in mu-rhythm control, valuable information about movement imagination is present on the untrained high-frequency rhythms. This is the first demonstration of the importance of high-frequency rhythms in imagined limb movements. (2) Self-paced finger tapping task in three healthy subjects including the data set used in the BCI-2003 competition. We show that by selecting electrodes and frequency ranges based on their discriminative power, the classification rates can be systematically improved with respect to results published thus far.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface

User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

Comparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System

 Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...

متن کامل

Affective Brain-Computer Interfaces Neuroscientific Approaches to Affect Detection

Affective brain-computer interfaces (aBCI): devices that allow the detection of the affective state of their users based on the neurophysiological activity associated with such states. Brain-computer interfaces (BCI): devices that allow for the control of devices and applications based on the neurophysiological activity of a user, thereby bypassing muscular pathways. Electroencephalography (EEG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Intelligence and Neuroscience

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007